WARNING:

UL rated motors must only be serviced by authorized Baldor Service Centers if these motors are to be returned to a flammable and/or explosive atmosphere.

General Inspection

Inspect the motor at regular intervals, approximately every 500 hours of operation or every 3 months, whichever occurs first. Keep the motor clean and the ventilation openings clear. The following steps should be performed at each inspection:

WARNING:

Do not touch electrical connections before you first ensure that power has been disconnected. Electrical shock can cause serious or fatal injury. Only qualified personnel should attempt the installation, operation and maintenance of this equipment.

- Check that the motor is clean. Check that the interior and exterior of the motor is free of dirt, oil, grease, water, etc. Oily vapor, paper pulp, textile lint, etc. can accumulate and block motor ventilation. If the motor is not properly ventilated, overheating can occur and cause early motor failure.
- 2. Use a "Megger" periodically to ensure that the integrity of the winding insulation has been maintained. Record the Megger readings. Immediately investigate any significant drop in insulation resistance.
- 3. Check all electrical connectors to be sure that they are tight.

Lubrication & Bearings

Bearing grease will lose its lubricating ability over time, not suddenly. The lubricating ability of a grease (over time) depends primarily on the type of grease, the size of the bearing, the speed at which the bearing operates and the severity of the operating conditions. Good results can be obtained if the following recommendations are used in your maintenance program.

Type of Grease

A high grade ball or roller bearing grease should be used. Recommended grease for standard service conditions is Polyrex EM (Exxon Mobil).

Equivalent and compatible greases include:

Texaco Polystar, Rykon Premium #2, Pennzoil Pen 2 Lube and Chevron SRI.

- Maximum operating temperature for standard motors = 110° C.
- Shut-down temperature in case of a malfunction = 115° C.

Lubrication Intervals

Recommended lubrication intervals are shown in Table 3-1. It is important to realize that the recommended intervals of Table 3-1 are based on average use.

Refer to additional information contained in Tables 3-2 and 3-3.

Table 3-1 Lubrication Intervals *

	Rated Speed - RPM					
NEMA / (IEC) Frame Size	10000	6000	3600	1800	1200	900
Up to 210 incl. (132)	**	2700 Hrs.	5500 Hrs.	12000 Hrs.	18000 Hrs.	22000 Hrs.
Over 210 to 280 incl. (180)			3600 Hrs.	9500 Hrs.	15000 Hrs.	18000 Hrs.
Over 280 to 360 incl. (225)			* 2200 Hrs.	7400 Hrs.	12000 Hrs.	15000 Hrs.
Over 360 to 5800 incl. (300)			*2200 Hrs.	3500 Hrs.	7400 Hrs.	10500 Hrs.

^{*} Lubrication intervals are for ball bearings. For roller bearings, divide the listed lubrication interval by 2.

For 6205 and 6806 bearings. For 6807 bearings, consult oil mist lubrication (MN401). Relubrication interval for 6205 bearing bearing is 1550Hrs. (using grease lubrication). Relubrication interval for 6806 bearing bearing is 720Hrs. (using grease lubrication).

Table 3-2 Service Conditions

Severity of Service	Ambient Temperature	Atmospheric	Type of Bearing
	Maximum	Contamination	
Standard	40° C	Clean, Little Corrosion	Deep Groove Ball Bearing
Severe	50° C	Moderate dirt, Corrosion	Ball Thrust, Roller
Extreme	>50° C* or Class H Insulation	Severe dirt, Abrasive dust, Corrosion	All Bearings
Low Temperature	<-30° C **	2011001011	

^{*} Special high temperature grease is recommended (Dow Corning DC44). Note that Dow Corning DC44 grease does not mix with other grease types. Thoroughly clean bearing & cavity before adding grease.

Table 3-3 Lubrication Interval Multiplier

Severity of Service	Multiplier
Standard	1.0
Severe	0.5
Extreme	0.1
Low Temperature	1.0

Table 3-4 Bearings Sizes and Types

Frame Size NEMA (IEC)	Bearing Description (These are the "Large" bearings (Shaft End) in each frame size)					
	Bearing	OD D mm	Width B mm	Weight of Grease to	Volume of grease to be added	
				add * oz (Grams)	in ³	tea- spoon
Up to 210 incl. (132)	6307	80	21	0.30 (8.4)	0.6	2.0
Over 210 to 280 incl. (180)	6311	120	29	0.61 (17)	1.2	3.9
Over 280 to 360 incl. (225)	6313	140	33	0.81 (23)	1.5	5.2
Over 360 to 449 incl. (280)	6319	200	45	2.12 (60)	4.1	13.4
Over 5000 to 5800 incl. (355)	6328	300	62	4.70 (130)	9.2	30.0
Over 360 to 449 incl. (280)	NU319	200	45	2.12 (60)	4.1	13.4
Over 5000 to 5800 incl. (355)	NU328	300	62	4.70 (130)	9.2	30.0
Spindle Motors						I
76 Frame	6207	72	17	0.22 (6.1)	0.44	1.4
77 Frame	6210	90	20	0.32 (9.0)	0.64	2.1
80 Frame	6213	120	23	0.49 (14.0)	0.99	3.3

^{*} Weight in grams = .005 DB

Note: Not all bearing sizes are listed. For intermediate bearing sizes, use the grease volume for the next larger size bearing.

^{**} Special low temperature grease is recommended (Aeroshell 7).

Lubrication Procedure

Be sure that the grease you are adding to the motor is compatible with the grease already in the motor. Consult your Baldor distributor or an authorized service center if a grease other than the recommended type is to be used.

Caution: To avoid damage to motor bearings, grease must be kept free of dirt.

For an extremely dirty environment, contact your Baldor distributor or an authorized Baldor Service Center for additional information.

With Grease Outlet Plug

- 1. Clean all grease fittings.
- 2. Remove grease outlet plug.
 - If motor is stopped, add the recommended amount of grease.

 If motor is to be greased while running, a slightly greater quantity of grease will have to be added. Add grease slowly until new grease appears at shaft hole in the endplate or purge outlet plug.
- 4. Re-install grease outlet plug.

Without Grease Outlet Plug

- Clean the grease fitting.
- 2. Add recommended amount of grease to bearing (see Table 3-4).

Sample Lubrication Determination

Assume - NEMA 286T (IEC 180), 1750 RPM motor driving an exhaust fan in an ambient temperature of 43° C and the atmosphere is moderately corrosive.

- 1. Table 3-1 list 9500 hours for standard conditions.
- 2. Table 3-2 classifies severity of service as "Severe".
- 3. Table 3-3 lists a multiplier value of 0.5 for Severe conditions.
- 4. Table 3-4 shows that 1.2 in³ or 3.9 teaspoon of grease is to be added.

Note: Smaller bearings in size category may require reduced amounts of grease.

Accessories

The following is a partial list of accessories available from Baldor. Contact your Baldor distributor for availability and pricing information.

Note: Space heaters and RTD's are standard on some motors.

Bearing RTD

RTD (Resistance Temperature Detector) devices are used to measure or monitor the temperature of the motor bearing during operation.

Bearing Thermocouples

Used to measure or monitor bearing temperatures.

Bearing Thermostat

Temperature device that activates when bearing temperatures are excessive. Used with an external circuit to warn of excessive bearing temperature or to shut down a motor.

Conduit Boxes

Optional conduit boxes are available in various sizes to accommodate accessory devices.

Cord & Plug Assembly

Adds a line cord and plug for portable applications.

Drains and Breathers

Stainless steel drains with separate breathers are available.

Drip Covers

Designed for use when motor is mounted in a vertical position. Contact your Baldor distributor to confirm that the motor is designed for vertical mounting.

Fan Cover & Lint Screen

To prevent build-up of debris on the cooling fan.

Nameplate

Additional stainless steel nameplates are available.

Roller Bearings

Recommended for belt drive applications with a speed of 1800 RPM or less.

Rotation Arrow Labels

Rotation arrows are supplied on motors designed to operate in one direction only. Additional rotation arrows are available.

Space Heater

Added to prevent condensation of moisture within the motor enclosure during periods of shut down or storage.

Stainless Hardware

Stainless steel hardware is available. Standard hardware is corrosion resistant zinc plated steel.

Winding RTD

RTD (Resistance Temperature Detector) devices are used to measure or monitor the temperature of the motor winding during operation.

Winding Thermocouples

Used to measure or monitor winding temperatures.

Winding Thermostat

Temperature device that activates when winding temperatures are excessive. Used with an external circuit to warn of excessive winding temperature or to shut down a motor.

Note: On some motors, leads for accessory devices are brought out to a separate conduit box located on the side of the motor housing (unless otherwise specified).

Table 3-5 Troubleshooting Chart

Symptom	Possible Causes	Possible Solutions
Motor will not start	Usually caused by line trouble, such	Check source of power. Check overloads, fuses,
	as, single phasing at the starter.	controls, etc.
Excessive humming	High Voltage.	Check input line connections.
	Eccentric air gap.	Have motor serviced at local Baldor service center.
Motor Over Heating	Overload. Compare actual amps	Locate and remove source of excessive friction in
	(measured) with nameplate rating.	motor or load.
	0	Reduce load or replace with motor of greater capacity.
	Single Phasing.	Check current at all phases (should be approximately
	In a read of the state of	equal) to isolate and correct the problem.
	Improper ventilation.	Check external cooling fan to be sure air is moving properly across cooling fins.
		Excessive dirt build-up on motor. Clean motor.
	Unbalanced voltage.	Check voltage at all phases (should be approximately
	Official voltage.	equal) to isolate and correct the problem.
	Rotor rubbing on stator.	Check air gap clearance and bearings.
	rtotor russing on staten	Tighten "Thru Bolts".
	Over voltage or under voltage.	Check input voltage at each phase to motor.
	Open stator winding.	Check stator resistance at all three phases for balance.
	Grounded winding.	Perform dielectric test and repair as required.
	Improper connections.	Inspect all electrical connections for proper
	impropor definidations.	termination, clearance, mechanical strength and
		electrical continuity. Refer to motor lead connection
		diagram.
Bearing Over Heating	Misalignment.	Check and align motor and driven equipment.
	Excessive belt tension.	Reduce belt tension to proper point for load.
	Excessive end thrust.	Reduce the end thrust from driven machine.
	Excessive grease in bearing.	Remove grease until cavity is approximately ³ / ₄ filled.
	Insufficient grease in bearing.	Add grease until cavity is approximately 3/4 filled.
	Dirt in bearing.	Clean bearing cavity and bearing. Repack with correct
		grease until cavity is approximately 3/4 filled.
Vibration	Misalignment.	Check and align motor and driven equipment.
	Rubbing between rotating parts and	Isolate and eliminate cause of rubbing.
	stationary parts.	
	Rotor out of balance.	Have rotor balance checked are repaired at your Baldor Service Center.
	Resonance.	Tune system or contact your Baldor Service Center for
		assistance.
Noise	Foreign material in air gap or	Remove rotor and foreign material. Reinstall rotor.
	ventilation openings.	Check insulation integrity. Clean ventilation openings.
Growling or whining	Bad bearing.	Replace bearing. Clean all grease from cavity and new
		bearing. Repack with correct grease until cavity is
		approximately ³ / ₄ filled.

Suggested bearing and winding RTD setting guidelines

Most large frame AC Baldor motors with a 1.15 service factor are designed to operate below a Class B (80°C) temperature rise at rated load and are built with a Class H winding insulation system. Based on this low temperature rise, RTD (Resistance Temperature Detectors) settings for Class B rise should be used as a starting point. Some motors with 1.0 service factor have Class F temperature rise.

The following tables show the suggested alarm and trip settings for RTDs. Proper bearing and winding RTD alarm and trip settings should be selected based on these tables unless otherwise specified for specific applications.

If the driven load is found to operate well below the initial temperature settings under normal conditions, the alarm and trip settings may be reduced so that an abnormal machine load will be identified.

The temperature limits are based on the installation of the winding RTDs imbedded in the winding as specified by NEMA. Bearing RTDs should be installed so they are in contact with the outer race on ball or roller bearings or in direct contact with the sleeve bearing shell.

Winding RTDs - Temperature Limit In °C (40°C Maximum Ambient)

Motor Load		o Rise ≤ 80°C Design)	Class F Temp Rise ≤ 105°C		Class H Temp Rise ≤ 125°C	
	Alarm	Trip	Alarm	Trip	Alarm	Trip
≤ Rated Load	130	140	155	165	175	185
Rated Load to 1.15 S.F.	140	150	160	165	180	185

Note: • Winding RTDs are factory production installed, not from Mod–Express.

Bearing RTDs - Temperature Limit In OC with 40°C Max Ambient

Bearing Type	Anti-Friction		Sleeve	
Oil or Grease	Alarm	Trip	Alarm	Trip
Standard*	95	100	85	95
High Temperature**	110	115	105	110

Note: * Bearing temperature limits are for standard design motors operating at Class B temperature rise.

Greases that may be substituted that are compatible with Polyrex EM (but considered as "standard" lubricants) include the following:

- Texaco Polystar
- Rykon Premium #2
- Chevron SRI #2

See the motor nameplate for replacement grease or oil recomendation. Contact Baldor application engineering for special lubricants or further clarifications.

[•] When Class H temperatures are used, consider bearing temperatures and lubrication requirements.

^{**} High temperature lubricants include some special synthetic oils and greases.

P.O. Box 2400 Ft. Smith, AR 72902-2400 (479) 646-4711 Fax (479) 648-5792

CH	D	UK	F
TEL:+41 52 647 4700	TEL:+49 89 90 50 80	TEL:+44 1454 850000	TEL: +33 145 10 7902
FAX:+41 52 659 2394	FAX:+49 89 90 50 8491	FAX:+44 1454 850001	FAX: +33 145 09 0864
I	AU	CC	MX
TEL:+39 11 562 4440	TEL:+61 29674 5455	TEL: +65 744 2572	TEL: +52 477 761 2030
FAX:+39 11 562 5660	FAX:+61 29674 2495	FAX: +65 747 1708	FAX: +52 477 761 2010